Tag Archives: CSRF

Cross-Site Request Forgery (CSRF)

Photo: Joe Penniston

Photo: Joe Penniston

This is the fifth-part in a ten-part-series describing the OWASP Top 10. (See all the OWASP Top 10)

What is Cross-Site Request Forgery (CSRF)

Cross-Site request forgery is a client-side vulnerability that allows an attacker to make requests on the user’s behalf. Although, most CSRF exploits require a user to be authenticated to the susceptible site to be successful, this is not always the case.

An Example of Cross-Site Request Forgery

A user (victim) opens their browser and logs on to their online banking application located at http://bank.com

After checking their balance they browse away from the site (without logging off) and start reading web pages about olives from Madagascar. One of these olive sites is owned by an attacker. The attacker’s website has the following img src tag:

<img src="http://bank.com/transfer.asp?to_acct=445544&amount=1000">

When the victim’s browser loads the malicious page that contains this img src tag, the victims browser makes the transfer request (/transfer.asp?to_acct=445544&amount=1000) to bank.com using the authenticated cookie from the earlier session. Upon making this request, the bank then transfers $1,000 from the victim’s account to account 445544. The attacker has now successfully executed a cross-site request forgery attack against a user of bank.com

How Do You Prevent Cross-Site Request Forgery

Any sensitive request that is generated by the user should force the user to “re-authenticate.” A simple example is that of change password functionality. You always want to verify the user knows the old password before changing their password, even if they are currently authenticated.

If you determine that “re-authentication” may be an inconvenience for the user or if all of your requests are considered sensitive then the application developers should include a random token that is unique to the user session. This token should not be present in the cookie, but rather as a hidden field in the HTML and then appended to the URL during any form submission.

When the attacker attempts to trick the users browser into making a request, the web application will look for this random token. The random token will not exist for the request, and the request will be denied. This prevents the CSRF attack from being successful.

Note: Having SSL does not protect your application from CSRF vulnerabilities.

OWASP Top 10


When developing a security strategy for web applications many companies have no idea where to begin. The Open Web Application Security Project (OWASP) understood this problem and developed the OWASP Top 10.

The OWASP top 10 are the top 10 vulnerabilities that are found in web applications. This will begin a 10-part series dedicated to each of these vulnerabilities.

If you are a developer, you should understand these vulnerabilities. Understanding them is critical into introducing less vulnerabilities into your code.

The OWASP Top 10:
A1 – Cross Site Scripting (XSS)
A2 – Injection Flaws
A3 – Malicious File Execution
A4 – Insecure Direct Object Reference
A5 – Cross Site Request Forgery (CSRF)
A6 – Information Leakage and Improper Error Handling
A7 – Broken Authentication and Session Management
A8 – Insecure Cryptographic Storage
A9 – Insecure Communications
A10 – Failure to Restrict URL Access

Don’t Click That Link!

Photo: B.G. Lewandowski

Photo: B.G. Lewandowski

Why did you just click that link? Most likely you have came to this site by clicking a link from another site. Why did you do that? Did you trust the person who sent you the link? Did you click a link from Twitter, Facebook, or an email someone sent you?

When you click a link, you are telling your browser, “I trust this person.” However, this is not the way we use the Internet. We click on links all the time. We click on links from “untrusted” sources. We click links from people we don’t know and we even click on URL’s that have been modified. On Twitter, a person is much more inclined to click the shortened link http://bit.ly/5hXRW then they are to click http://somewherebank.com/transfer.jsp?amount=1000&to_account=56777564. Even though the shortened link could redirect to the somwherebank.com site.

But, why would someone trick you into clicking a cleverly disguised link? The site that you are redirected to may seem harmless. It could also be extremely malicious.

What happens if this page, (the one you are currently viewing), was filled with Cross-Site Request Forgery (CSRF) links? This web page could be setup with all types of malicious intent. However, you didn’t know that when clicking the link. Now, it is too late.

If this site did have Cross-Site Requests, I could do things such as:

  • Change the password on your Facebook account
  • Transfer the money from your on-line bank account to another account
  • Enact trades from a financial institution such as E*Trade

The sites that I exploit would have to be vulnerable to CSRF. But researchers, such as Mike Bailey and Russ McRee, are constantly finding CSRF vulnerabilities in web applications.

An example of how clicking links from untrusted sources is never good was demonstrated in Billy Rios and Nitesh Dhanjani, Bad Sushi talk. In their presentation they described sending phishers a word document stating their account numbers were inside. They sent this email to 25 known phishers. 10 of the phishers opened the word document and were presented with this. In addition, there was another link that said, “Actually, my account information is here.” 3 of the 10 clicked on that link. Even the phishers click links they shouldn’t.

What should be done? Who knows. It is human nature to trust people and we can’t get things done if every time someone sends us a link we open up a VMware image to view a link. So continue using the Internet the way you have been and remember, “These aren’t the droids your looking for.”